
J.  Am. Chem. SOC. 1991, 113, 5111-5112 5111 

and reveals the sequence specificity of binding when the end-la- 
beled products are subjected to high resolution denaturing gel 
electrophoresis. Reactions were performed in the presence of 12 
mM Mg2+ and 135 mM KCl,I3 and enzymatic conditions were 
chosen to ensure that the extent of RNA:DNA hybridization was 
rate limiting.“ 

All probes bind and induce RNase H cleavage at  their targeted 
site(s) (Figure 2A). Comparison of the site-specific cleavage 
induced by TOP 1 with that induced by probes 4 and 6 (which 
contain only one oligodeoxynucleotide) indicates a significant 
increase in yield at  both sites when the two oligcdeoxynucleotides 
are united in a single molecule. Comparison of TOP 2 with probes 
5 and 7 shows the identical trend. Neither 10 nor 11 induces RNA 
cleavage at  either site, demonstrating that the 5’-site cleavage 
enhancement depends on sequence-speciJic hybridization at  the 
3’-site. None of the TOPs induce cleavage at  several partially 
complementary sites (Figure I), providing evidence that secondary 
structure has been maintained.l5 Thus, TOPs 1 and 2 hybridize 
cooperatively and sequence-specifically to the SL RNA, and the 
hybridization efficiency of TOP 1 is higher. 

Selective competition experiments demonstrate cooperative 
formation of a 1:l complex. RNA was incubated with RNase 
H, TOP, and an excess of either UCCAAAAUUU or 
TCCAAAATTT. If binding of the TOP to the 5’-site depends 
explicitly on simultaneous binding to the 3’-site, and the con- 
centration of the competing probe is high enough to displace the 
TOP 5’-end, then the TOP 3’-end should be unbound at  equi- 
librium with a concomitant loss of RNase H sensitivity at  bases 
13-19.16 If binding is noncooperative or multimeric, a significant 
fraction of TOP 3’-ends will be bound at the 5’-site and detected 
by RNase H. As shown in Figure 2B, competition with excess 
UCCAAAAUUU or TCCAAAATM causes the S’-site cleauage 
yield to decrease for all three TOPs. In contrast, cleavage at  the 
5’-site is unaffected when the experiment is performed in the 
presence of untethered oligonucleotides 8 (TCCAAAATTT) and 
9 (GTTCTTC). Addition of noncomplementary AAAUUUUG- 
GA has no (1 or 2) or little (3) effect on RNase H sensitivity at  
either site. Moreover, an oligoribonucleotide complementary to 
the 5’-site causes a reduction in cleavage yield at  both the 5’- and 
3’-sites when TOPS 1-3 are tested but not when the experiment 
is performed with 8 and 9.’’ This data demonstrates that the 
two oligonucleotide segments within each TOP interact cooper- 
atively, and both ends bind simultaneously to a single molecule 
of the SL RNA. Because they combine the increased sequence 
selectivity provided by two oligonucleotides with the structural 
specificity of a synthetic tether, TOPs offer the potential to 
characterize and dif erentiate tertiary structures in globular 
RNAs and RNPs.lBJ6 Experiments to address this question are 
underway. 
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High selectivity in the binding of various substrates to a host 
molecule is often dependent upon conformational homogeneity 
and substantial host/guest contact. In this communication, we 
describe two chiral, C3-symmetric receptors (1 and 2) having only 
limited conformational flexibility and deep basket-like binding 
sites.’ These molecules bind diamides of certain amino acids with 
high selectivity which is dependent upon the nature of the amino 
acid side chain (-2 kcal/mol for serine vs alanine) and the identity 
of the N-alkyl substituent (>3 kcal/mol for methyl vs tert-butyl). 
They are also among the most enantioselective synthetic receptors 
yet prepared2 and bind certain derivatives of L-amino acids with 
selectivities as high as 3 kcal/mol. 

The syntheses (see supplementary material) of 1 and 2 utilized 
their C3 symmetry and began with trialkylation of 1,3,5-tri- 
mer~aptobenzene~ or phloroglucinol with N-protected methyl 
3-(aminomethyl)-5-(bromomethyl)benzoate. After coupling with 
Boc-L-phenylalanine (Phe), a triple macrolactamization via a 
tris(pentafluoropheny1 ester) provided 1 and 2 in 30% and 7% 
yields, respectively. 

Receptors 1 and 2 are exceptional in that Monte Carlo con- 
formational searching4 using the MacroModel/AMBER5 force 
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Tabk 1. A C s  of Association (kcal/mol) of I and 2 with SimDle PeDtides , .  

-AG,O kcal/mol saturation! % AAG,C kcal/mol 
entry peptide substrate 1 2 1 2 1 2 

1 N-Boc-D-Ala-NHMe 1.7 2.1 53 70 
2 N-Boc-L-Ala-NHMe 3.9 3.8 93 90 2.2 1.7 
3 A'-Boc-L-Ala-NHBn 1.4 51 
4 N-Boc-L-Ala-NHt Bu ncd 
5 N-Boc-D-Val-NH Me 1.5 1.5 51 54 
6 N-Boc-L-Val-NHMe 4.4 4.0 79 74 2.9 
7 N-Boc-&Leu-N H Me 1.5 1.6 64 60 
8 N-Boc-L-Leu-NH Me 4.1 3.8 88 78 2.6 
9 N-Boc-D-Ser-N H Me 3.8 4.4 86 94 

10 N-Boc-L-Ser-NH Me >6.1 >6.2 95 96 >2.3 
1 1  N-Boc-L-Ser(0Bn)-NHMe 3.1 83 
12 N-Boc-D-Thr-N H Me 3.2 3.6 84 90 
13 N-Boc-L-Thr-N H Me >6.2 I!# >95 >3.0 
14 N-Ac-&Ala-NHMe 2.7 90 
15 N-Ac-L-Ala-NHMe 3.9 94 I .2 
16 N-Ac-&Ala-NHt Bu 2.0 59 
17 N-Ac-t-Ala-N Ht Bu 3 .O 85 1 .o 

2.5 

2.2 

>1.8 

"Measured by N M R  titration at 25 "C with 1 or 2 at 0.5 m M  concentration in CDC13. bExtent of extrapolated saturation at end of titration. 
CEnantioselectivity, AG(D) - AG(L). "No complexation detected. 'Too large to  measure accurately. 

field predicts them (Phe modeled by Ala) to exist largely in a single 
family of closely related conformations having near or perfect C, 
symmetry (see supplementary material). All low-energy con- 
formations have Phe's folded into y-turns around the periphery 
of a large binding cavity with dimensions (-6 A diameter) similar 
to those of a-cyclodextrin. They differ primarily in the central 
ring Ar-X-CH2-Ar' torsion angles, differences that make only 
insignificant changes in the shape and nature of the binding cavity. 
These structures are compatible with available experimental ev- 
idence including NH-CH, coupling constants (J(1) = 8.1 Hz; 
4 2 )  = 8.0 H z ) ~  and the presence of both free and hydrogen- 
bonded N-H infrared bands (3434, 3321 cm-') in  dilute CDCI, 
solution. Simulated annealing suggests the conformation to change 
little upon binding: the lowest energy complex with Boc-L-ala- 
nine-NHMe found is shown in stereo in Figure 1. The molecular 
mechanics model of the complex is held together by three N- 
H / O = C  hydrogen bonds. 

As summarized in Table 1, receptors 1 and 2 show high binding 
selectivity among simple peptides. With Boc-protected, N- 
methylamide amino acid derivatives, enantioselectivity ranges from 
1.7 to 3.0 kcal/mol with the L isomer always being bound pref- 
erentially (entries 1 /2, 5 / 6 ,  7/8, 9/ 10, 12/ 13). Side-chain 
functionality can also be distinguished by our receptors as shown 
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in entries 1-8 vs 9.10 and 12.1 3. Here the sidechain hydroxyls 
of serine and threonine contribute - 2  kcal/mol to association 
energies and effectively distinguish these amino acids from Ala, 
Val, and Leu. Such hydroxylated L-amino acids bind better than 
0-benzyl-L-serine (entry 1 1 )  by -3 kcal/mol. 

Only Boc-protected peptides with small N-methyl C-termini 
bind tightly (entry 2 vs 3,4). The sensitivity of binding to C- 
terminal steric effects is compatible with a complex in which an 
N-methylamide is buried deep within the binding cavity as shown 
in Figure 1. This structure is supported by the NMR spectra of 
the complexes of 1 and 2 with Boc-L-threonine N-methylamide: 
in accord with the proposed structure which locates the N-methyl 
group near the shielding faces of all four macrocyclic aromatics, 
the N-methyl resonance shifts from 2.8 ppm to -0.8 ppm upon 
complexation. Similar shifts were found with other complexes 
of I and 2. Additional support comes from intermolecular NOE 
experiments which indicate contacts between the threonine N- 
methyl and protons Ha, Hb, and H, of 1. Entries 14-17 suggest 
that other binding modes are available to amino acid derivatives 
having small N-terminal functionalities such as acetyl. 

The high selectivity and generality of these simple receptors 
for L-amino acid derivatives make them resemble the binding sites 
of naturally occurring enzymes. Work directed toward extending 
their selectivity is in progress.' 

Supplementary Material Available: Synthetic schemes for I 
and 2 and C3 global minimum of 1 found by conformational search 
(2 pages). Ordering information is given on any current masthead 
page. 
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