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Abstract—A new fluorescent anion sensor 1, based on a biaryl-thiourea system, exhibits a fluorescence emission enhancement via
conformational restriction upon a hydrogen bond-mediated complexation of fluoride anions. © 2002 Elsevier Science Ltd. All

rights reserved.

Recently, considerable attention has been focused on
the design of receptors that have the ability to selec-
tively bind and sense anions through electrochemical
and optical responses.! The construction of fluorescent
sensors, which have specificity for target anions, is
particularly attractive. A typical fluorescent sensor for
anions is generally built through a modular approach,
by either covalently or noncovalently attaching an
appropriate photoactive fluorophore to the receptor
with an affinity for the desired substrate.'®>3* Following
the receptor—anion interaction, an appropriate signaling
process must take place. This process distinctly modifies
the emission of the fluorophore, thus signaling the
occurrence of the recognition event.'® The fluorescent
mechanisms used in the signaling process for anion
sensing are generally photoinduced electron transfer
(PET),* excited-state proton transfer,’ excimer/exciplex
formation,® metal-to-ligand charge transfer,'® and mod-
ulation of the efficiency of interchromophore energy
transfer.!"” Several groups have investigated an alterna-
tive mechanism for fluorescent chemosensor action, in
which a substrate binding leads to conformational
restriction of a fluorophore. This in turn produces
fluorescence enhancement.®®

In particular, the number of fluorescent sensors for
fluoride anions**410 is still quite small in spite of its
importance in clinical treatment for osteoporosis and
detection of fluoride toxicity resulting from over-accu-
mulation of fluorides in the bone."

* Corresponding author.

In this paper, we present a selective fluorescent anion
sensor 1, based on a biaryl-thiourea system, which
shows a fluorescence emission enhancement by confor-
mational restriction upon a hydrogen bond-mediated
complexation of F~.

The synthesis of 1 began from a known precursor,
2,2'-bis(aminomethyl)biphenyl,'** which was reacted in
THF with 2 equiv. of n-butylisothiocyanate to provide
1 in 60% yield.!?® The control 2 was similarly prepared
following the same methodology as was applied in the
synthesis of 1.3

Sensor 1 contains four thiourea NH groups designed
for a geometrical fit for anions'? and a biphenyl moiety
as a fluorescence-monitoring unit (Fig. 1).

The effect of anions (as tetrabutylammonium salts) on
the fluorescence spectrum of 1 was investigated in
CHCl;, and the results are shown in Fig. 2. In the
absence of anions, the emission spectrum of 1 is charac-
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Figure 1. Fluorescent anion sensors 1 and 2.
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Figure 2. Fluorescence emission response profiles of 1 and 2
at emission maxima (356 nm). Excitation wavelength: 276 nm
(20°C).
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Figure 3. Fluorescence titration spectra of 1 with n-Bu,N*F~
in CHCl; at 20°C. [1]=0.2 mM. Excitation wavelength: 276
nm.
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Figure 4. Dependence of fluorescence intensity of 1 at 356 nm
on the concentration of (a) F~ and (b) H,PO,™ in CHCI, at
20°C. [1]=0.1 mM.

terized by the presence of emission maxima at 379 nm.
As shown in Fig. 2, the presence of F~ resulted in a
fluorescence enhancement at 356 nm. However, 1 did
not exhibit any obvious spectral change at 356 nm upon
the addition of H,PO,”, CH,CO,", HSO, , CI- or
Br—.!* These results suggested that 1 has a higher selec-
tivity for F~ compared to the other anions.

The dependence of fluorescence spectra of 1 in CHCI,
on the F~ concentration is shown in Fig. 3a.

Increasing the F~ concentration up to 2.5 equiv. relative
to the concentration of 1 resulted in 2.4-fold fluores-
cence enhancement accompanied by a hypsochromic
shift (~23 nm). The reverse change was observed upon
further addition of F~. As shown in Fig. 3b, the intro-
duction of additional F~ shows a decrease in the
fluorescence intensity along with a bathochromic shift
(~16 nm). The dependence of the intensity at 356 nm
on the concentration of F~ strongly suggests that two
kinds of complexes are formed, both a 1:1 and 1:2
host—guest complex as shown in Scheme 1. As complex
A is formed, 1 shows fluorescence enhancement via
conformational restriction. Then, as complex B is
formed, a decrease in the fluorescence intensity takes
place by the loss of conformational restriction induced
by complex A. The data in Fig. 4 are well fitted with an
equation assuming that the fluorescence change at 356
nm is only induced by the formation of a 1:1 complex
between 1 and F~, and the association constants of the
1:1 and 1:2 complexes are calculated to be 1.08x10?
M! (K;;)) and 228x107 M2 (B,=K;K},),
respectively.®13

Scheme 1. Proposed mechanism for the complexation of 1 with fluoride ions.
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It is noteworthy that compound 2 with one thiourea
group shows no fluorescence enhancement at 356 nm
upon the addition of F~. These results indicate that the
introduction of bis-thiourea induces the conformational
restriction upon fluoride binding, which leads to the
fluorescence enhancement. However, as shown in Fig.
5, a broad emission enhancement around 470 nm was
detected. This signal may originate from the biphenyl
excimer formation.*!®!” The origin of the broad emis-
sion enhancement around 470 nm in Fig. 3, which
develops upon F~ binding, also comes from this
process.

The fluorescence titration of 1 with H,PO,~, CH,CO,",
HSO,, ClI- and Br  only shows broad emission
enhancement around 470 nm. This result indicates that
even though these anions interact with thiourea groups,
they do not necessarily form complexes with 1 like
complex A. Thus, fluorescence enhancement at 356 nm
via conformation restriction was not detected.

Only small changes in the UV spectrum occur during
the titration with F~, indicating that the increase in
emission results primarily from an increase in the effec-
tive quantum yield.®®

The selectivity for F~ can be understood on the basis of
the guest basicity and the complex structure. The F~
anion appears to have the proper size for the binding
pocket between the two thiourea groups. It also
exhibits a stronger basicity than other anions, and
should exhibit a more effective hydrogen bonding inter-
action with the two thiourea groups comprising the
binding site. An energy-minimized structure for the
complex with F~ shows proper hydrogen bonds
between the four thiourea NHs and a fluoride anion as
expected.'® Although 1 is flexible enough to enable
hydrogen bonds to be formed with any anions, hydro-
gen bonds between 1 and other anions as shown in
complex A (Scheme 1) are not favored due to the
improper hydrogen bond angle and bond distance of
NH-A (A: hydrogen bond acceptor of anions).'®

In summary, we have developed a new fluorescent
anion sensor 1 with biphenyl and bis-thiourea moieties.
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Figure 5. Fluorescence titration of 2 with n-Bu,N*F~ in
CHCI, at 20°C. [2]=0.2 mM. Excitation wavelength: 276 nm.

Sensor 1 shows fluorescence emission enhancement by
conformational restriction upon hydrogen bond-medi-
ated complexation of fluoride ions.
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